《自然语言处理实战入门》NLP未来发展方向


在这里插入图片描述


NLP预训练模型到代码智能预训练模型

自然语言处理在深度学习的支撑下取得了迅猛发展,总结的过去5年ACL文章中自然语言发展的主要工作,包括 Word embeddings、LSTM、Encode decoder、RNN、Pre-trainedmodel 等,这些技术推动了自然语言的应用,包括基于神经网络的机器翻译,预训练模型演化,阅读理解技术等。

基于以上研究,过去5年神经网络自然语言处理具有里程碑意义的工作。
在这里插入图片描述

图2:NN-NLP的技术演进

  1. Word embedding。

2013年,Mikolov 等提出利用上下文预测中间词或利用中间词来预测上下文。在一个窗口内,根据预测的损失,回传调整 Word embeddings,并通过大规模文本训练,

shiter CSDN认证博客专家 NLP 自然语言处理 算法
CSDN博客专家,人工智能与大数据领域优秀创作者,博客累计近300w 人次访问。 熟悉自然语言处理(NLP)、大数据(Spark 、Elasticsearch)、数据分析(python),计算机视觉(OpenCV、立体匹配)等领域的研发工作。精通基于pySpark\Elasticsearch\Hadoop生态圈,c/c++开发,OpenCV接口。 曾参与并负责国家级大数据安全项目相关POC验证与探索工作,负责国家级大健康平台相关开发与管理工作,目前主要负责金融行业AI与大数据相关开发与落地。Generally speaking I am a hard working man!!!
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值